

Project

Evaluation of CT Registration for Image-Based Sinus Reconstruction

Jan Mangulabnan under the mentorship of Dr. Roger Soberanis and Prof. Mathias Unberath

Endoscopic navigation guides surgeons through intricate anatomies to improve patient outcomes during surgical intervention.

Standard approaches like optical and electromagnetic tracking require additional resources that may **negatively impact clinical workflow**.

Vision-based solutions provide advanced visualization and improved spatial understanding at no additional hardware cost.

Investigating multiple registration options to align dense reconstruction and CT

Evaluating **local** reconstructions with camera pose registration

Registration Framework

Adjusting **the depth fusion step** in attempt to rescale the dense reconstruction

References

- [1] Xingtong Liu et al. "Reconstructing Sinus Anatomy from Endoscopic Video Towards a Radiation-Free Approach for Quantitative Longitudinal Assessment". In: Medical Image Computing and Computer Assisted Intervention -MICCAI 2020. Ed. by Anne L. Martel et al. Cham: Springer International Publishing, 2020, pp. 3–13. isbn: 978-3-030-59716-0.
- [2] Andriy Myronenko and Xubo Song. "Point set registration: Coherent point drift". In: IEEE transactions on pattern analysis and machine intelligence 32.12 (2010), pp. 2262–2275.
- [3] Brian Curless and Marc Levoy. "A volumetric method for building complex models from range images". In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. 1996, pp. 303–312

Outliers Weighting Large Original Depths Removed by Removed Uncertainty

Sequence Indexes	Fusion Adjustment	Scale Invariant Depth Error	Mesh Distance (mm)
0 - 1059	Original	0.490	1.691
	Weighted	0.491	1.674
	Large Depths Removed	0.493	1.786
	Outliers Removed	0.514	1.710

Next Steps

- Evaluate different patient anatomies using this registration framework
- Explore other potential sources of error (depth) estimator, SfM point cloud, etc.)

Computer Integrated Surgery II, Spring 2023